Katate Masatsuka (方手雅塚)

Katate Masatsuka speaks.

List of Publication – Updated on 01/31/2023

leave a comment »

This is a list of all papers published by Hiroaki Nishikawa, with links to papers and preprints.

——————————————————————————————————
– Journal papers
——————————————————————————————————

  1. Y. Liu, B. Diskin, H. Nishikawa, W. K. Anderson, E. J. Nielsen, L. Wang, “Edge-Based Viscous Method for Node-Centered Finite-Volume Formulation on Tetrahedra”, AIAA Journal, Volume 60, Number 12, pp.6910-6925, December 2022. doi: 10.2514/1.J061728 [ preprint ] n

  2. H. Nishikawa, “A flux correction for finite-volume discretizations: Achieving second-order accuracy on arbitrary polyhedral grids”, Journal of Computational Physics, Volume 468, 1 November 2022, 111481.
    doi: 10.1016/j.jcp.2022.111481 [ preprint ] acn

  3. H. Nishikawa, “Analytical formulas for verification of aerodynamic force and moment computations”, Journal of Computational Physics, Volume 466, 1 October 2022, 111408.
    doi: 10.1016/j.jcp.2022.111408 [ preprint ] ac

  4. B. van Leer and H. Nishikawa, “Towards the Ultimate Understanding of MUSCL: Pitfalls in Achieving Third-Order Accuracy”, Journal of Computational Physics, Volume 446, 1 December 2021, 110640. doi:10.1016/j.jcp.2021.110640 [ preprint ] acn

  5. E. Padway and H. Nishikawa, “Resolving Confusions Over Third Order Accuracy of U-MUSCL”, AIAA Journal, Volume 60, Number 3, pp.1415-1439, March 2022, doi:10.2514/1.j060773 [ preprint ] acn

  6. H. Nishikawa, “A Hyperbolic Poisson Solver for Wall Distance Computation on Irregular Triangular Grids”, Journal of Computational Physics, Volume 445, 15 November 2021, 110599, doi:10.1016/j.jcp.2021.110599 [ preprint ] acn

  7. H. Nishikawa, “Economically High‐Order Unstructured‐Grid Methods: Clarification and Efficient FSR Schemes”, International Journal for Numerical Methods in Fluids, Volume 93, Issue 11, pp.3187-3214, 2021, doi:10.1002/fld.5028.  [ preprint ] acn

  8. H. Nishikawa, “On False Accuracy Verification of UMUSCL Scheme”, Communications in Computational Physics, Volume 30, pp.1037-1060, 2021, doi:10.4208/cicp.OA-2020-0198. [ preprint ]. acn

  9. H. Nishikawa, “The QUICK Scheme is a Third-Order Finite-Volume Scheme with Point-Valued Numerical Solutions”, International Journal for Numerical Methods in Fluids, Volume 93, Issue 7, pp.2311-2388, 2021, doi:10.1002/fld.4975 [ preprint ] acn

  10. H. Nishikawa, “A Flexible Gradient Method for Unstructured-Grid Solvers”, International Journal for Numerical Methods in Fluids, Volume 93, Issue 6, pp.2015-2021, 2021, doi: 10.1002/fld.4955.  [ preprint ] n

  11. L. Li, J. Lou. H. Nishikawa and H. Luo, “Reconstructed discontinuous Galerkin methods for compressible flows based on a new hyperbolic Navier-Stokes system”, Journal of Computational Physics, Volume 427, 15 February 2021, 110058, doi: 10.1016/j.jcp.2020.110058  [ preprint ] a

  12. H. Nishikawa, “A Truncation Error Analysis of Third‐Order MUSCL Scheme for Nonlinear Conservation Laws”, International Journal for Numerical Methods in Fluids, Volume 93, Issue 4, pp.1031-1052, 2020, doi: 10.1002/fld.4918.  [ preprint ] acn

  13. H. Nishikawa, “On the Loss and Recovery of Second-Order Accuracy with U-MUSCL”, Journal of Computational Physics, Volume 417, 15 September 2020, 109600, doi: 10.1016/j.jcp.2020.109600[ preprint ] n

  14. H. Nishikawa and J. A. White, “An efficient cell-centered finite-volume method with face-averaged nodal-gradients for triangular grids”, Journal of Computational Physics, Volume 411, 15 June 2020, 109423, doi: 10.1016/j.jcp.2020.109423. [ preprint ] n

  15. H. Nishikawa, “A hyperbolic Poisson solver for tetrahedral grids”, Journal of Computational Physics, Volume 409, 15 May 2020, 109358, doi: 10.1016/j.jcp.2020.109358. [ preprint ] ac

  16. H. Nishikawa, “Robust numerical fluxes for unrealizable states”, Journal of Computational Physics, Volume 408, 1 May 2020, 109244, doi: 10.1016/j.jcp.2020.109244. [ preprint ] acn

  17. H. Nishikawa, “A Face-Area-Weighted ‘Centroid’ Formula for Finite-Volume Method That Improves Skewness and Convergence on Triangular Grids”, Journal of Computational Physics, Volume 401, 15 January 2020, 109001, doi: 10.1016/j.jcp.2019.109001. [ preprint ] c

  18. A. S. Chamarthi and H. Nishikawa and K. Komurasaki, First Order Hyperbolic Approach for Anisotropic Diffusion Equation, Journal of Computational Physics, Volume 396, pp. 243-263, November 2019, doi: 10.1016/j.jcp.2019.06.064. [ preprint ]

  19. H. Nishikawa, On Large Start-Up Error of BDF2, Journal of Computational Physics, Volume 392, pp. 456-461, 2019, doi: 10.1016/j.jcp.2019.04.070. [ preprint ]

  20. H. Nishikawa, Efficient gradient stencils for robust implicit finite-volume solver convergence on distorted grids, Journal of Computational Physics, Volume 386, pp. 486-501, 2019, doi: 10.1016/j.jcp.2019.02.026. [ preprint ]

  21. J. Lou, X. Liu, H. Luo, and H. Nishikawa, Reconstructed Discontinuous Galerkin Methods for Hyperbolic Diffusion Equations on Unstructured Grids, Commun. Comput. Phys., 25, pp. 1302-1327, 2019, doi: 10.4208/cicp.OA-2017-0186.

  22. H. Nishikawa, From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids, Journal of Computational Physics, Volume 372, pp. 126-160, 2018,doi: 10.1016/j.jcp.2018.06.019 [ preprint ]

  23. J. Lou, L. Li, H. Luo, and H. Nishikawa, “Reconstructed discontinuous Galerkin methods for linear advection-diffusion equations based on first-order hyperbolic system”, Journal of Computational Physics, Volume 369, pp. 103-124, 2018, doi: 10.1016/j.jcp.2018.04.058.

  24. H. Nishikawa, On Hyperbolic Method for Diffusion with Discontinuous Coefficients, Journal of Computational Physics, Volume 367, pp. 102-108, 2018, 10.1016/j.jcp.2018.04.027. [ preprint ]

  25. H. Nishikawa and Y. Nakashima, Dimensional Scaling and Numerical Similarity in Hyperbolic Method for Diffusion, Journal of Computational Physics, Volume 355, pp. 121-143, 2018, doi: 10.1016/j.jcp.2017.11.008. [ preprint ]

  26. H. Nishikawa and Y. Liu, Hyperbolic Advection-Diffusion Schemes for High-Reynolds-Number Boundary-Layer Problems, Journal of Computational Physics, Volume 352, pp. 23-51, 2018, doi: 10.1016/j.jcp.2017.09.039. [ preprint ]

  27. H. Nishikawa and Y. Nakashima and N. Watanabe, Effects of High-Frequency Damping on Iterative Convergence of Implicit Viscous Solver, Journal of Computational Physics, Volume 348, pp. 66-81, 2018, 10.1016/j.jcp.2017.07.021. [ preprint ]

  28. H. Nishikawa and Y. Liu, Accuracy-Preserving Source Term Quadrature for Third-Order Edge-Based Discretization, Journal of Computational Physics, Volume 344, pp. 595-622, 2017, doi: 10.1016/j.jcp.2017.04.075. [ preprint ]

  29. H. Baty and H. Nishikawa, Hyperbolic Method for Magnetic Reconnection Process in Steady State Magnetohydrodynamics, Monthly Notices of the Royal Astronomical Society, 459, pp.624-637, 2016, doi: 10.1093/mnras/stw654.

  30. H. Nishikawa and P. L. Roe, Third-order active-flux scheme for advection diffusion: Hyperbolic diffusion, boundary condition, and Newton solver, Computers and Fluids, 125, pp.71-81, 2016, doi: 10.1016/j.compfluid.2015.10.020. [ preprint ]

  31. Efficient High-Order Discontinuous Galerkin Schemes with First-Order Hyperbolic Advection-Diffusion System Approach, Journal of Computational Physics, Volume 321, pp. 729-754, 2016.
  32.    M. Ricchiuto, H. Nishikawa, A First-Order Hyperbolic System Approach for Dispersion, Journal of Computational Physics, Volume 321, pp. 593-605, 2016.
  33. High-order shock-capturing hyperbolic residual-distribution schemes on irregular triangular grids, Computers and Fluids, Volume 131, pp. 29-44, 2016.
  34. Improved second-order hyperbolic residual-distribution scheme and its extension to third-order on arbitrary triangular grids, Journal of Computational Physics, 300, pp.455-491, 2015.
  35. Very efficient high-order hyperbolic schemes for time-dependent advection-diffusion problems: Third-, fourth-, and sixth-order, Computers and Fluids, 102, pp.131-147 2014.

  36. H. Nishikawa, Accuracy-preserving boundary flux quadrature for finite-volume discretization on unstructured grids, Journal of Computational Physics, Volume 281, pp. 518-555, 2015, doi: 10.1016/j.jcp.2014.10.033. [ preprint(pdf) | slides | seminar video ]

  37. First, Second, and Third Order Finite-Volume Schemes for Advection Diffusion, Journal of Computational Physics, Volume 273, Issue 15, pp. 287-309, 2014, doi: 10.1016/j.jcp.2014.05.021. [ preprint ]

  38. H. Nishikawa, First, Second, and Third Order Finite-Volume Schemes for Diffusion, Journal of Computational Physics, Volume 256, Issue 1, pp. 791-805, 2014, doi: 10.1016/j.jcp.2013.09.024. [ preprint ]

  39. H. Nishikawa, Divergence Formulation of Source Term, Journal of Computational Physics, Volume 231, Issue 19,, pp. 6393-6400, 2012, doi: 10.1016/j.jcp.2012.05.032. [ preprint ]

  40. H. Nishikawa, Robust and Accurate Viscous Discretization via Upwind Scheme – I: Basic Principle, Computers and Fluids, Volume 49, Issue 1, pp. 62-86, 2011, doi: 10.1016/j.compfluid.2011.04.014. [ preprint ]

  41. J. L. Thomas, B. Diskin, and H. Nishikawa, Critical Study of Agglomerated Multigrid Methods for Diffusion on Highly-Stretched Grids, Computers and Fluids, Volume 41, Issue 1, pp. 82-93, 2011, doi: 10.1016/j.compfluid.2010.09.023.

  42. H. Nishikawa, A First-Order System Approach for Diffusion Equation. II: Unification of Advection and Diffusion, Journal of Computational Physics, 229, pp. 3989-4016, 2010, doi: 10.1016/j.jcp.2009.10.040. [ preprint ]

  43. H. Nishikawa, B. Diskin, and J. L. Thomas, Critical Study of Agglomerated Multigrid Methods for Diffusion, AIAA Journal, Vol. 48, No. 4, pp. 839-847, 2010, doi: 10.2514/1.J050055.

  44. B. Diskin, J. L. Thomas, E, J. Nielsen, H. Nishikawa and J. A. White, Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes, AIAA Journal, Vol. 48, No. 7, pp. 1326-1338, 2010, doi: 10.2514/1.44940.

  45. H. Nishikawa, Adaptive-Quadrature Fluctuation-Splitting Schemes for the Euler Equations, International Journal for Numerical Methods in Fluids, 57, pp. 1-12, 2008, doi: 10.1002/fld.1609.

  46. H. Nishikawa and K. Kitamura, Very Simple, Carbuncle-Free, Boundary-Layer-Resolving, Rotated-Hybrid Riemann Solvers, Journal of Computational Physics, 227, pp. 2560-2581, 2008, doi: 10.1016/j.jcp.2007.11.003.  [ preprint ]

  47. H. Nishikawa, A First-Order System Approach for Diffusion Equation. I: Second-Order Residual Distribution Schemes, Journal of Computational Physics, 227, pp. 315-352, 2007, doi: 10.1016/j.jcp.2007.07.029.  [ preprint ]

  48. H. Nishikawa, Multigrid Third-Order Least-Squares Solution of Cauchy-Riemann Equations on Unstructured Triangular Grids, International Journal for Numerical Methods in Fluids, 53: 443-454, 2007, doi: 10.1002/fld.1287.

  49. H. Nishikawa and B. van Leer, Optimal Multigrid Convergence by Elliptic/Hyperbolic Splitting, Journal of Computational Physics, 190, pp. 52-63, 2003, doi: 10.1016/S0021-9991(03)00253-5.

  50. P. L. Roe and H. Nishikawa, Adaptive Grid Generation by Minimising Residuals, International Journal for Numerical Methods in Fluids, 40: 121-136, 2002, doi: 10.1002/fld.336.  [ journal ]

——————————————————————————————————
– Lectures
——————————————————————————————————

  1. H. Nishikawa, “Making Your Own Mesh”, JOINT NATIONAL INSTITUTE OF AEROSPACE (NIA) & SU2 FOUNDATION USER WORKSHOP, August 9, 2019 [ pdf | video ]

  2. H. Nishikawa, “CFD II: Unstructured grids and algorithms”, Old Dominion University, Fall 2018.

  3. H. Nishikawa, Higher-Order Discretizatoin of Diffusion Terms in Residual Distribution Methods, in 34th VKI CFD Lecture Series, Very High Order Discretization Methods, VKI Lecture Series, 2005. [ pdf ]

——————————————————————————————————
– Technical Notes and Preprints (excluding those later published in a journal)
——————————————————————————————————

  1. H. Nishikawa and B. Diskin, “Arithmetic Averages of Viscosity Coefficient are Sufficient for Second-Order Finite-Volume Viscous Discretization on Unstructured Grids, arXiv:2203.08334v1 [math.NA] , March 2022.

  2. H. Nishikawa, “On Dissipation Terms of Upwind Fluxes for Hyperbolic Navier-Stokes Systems: HNS17 and HNS17G”, January 2022, doi: 10.13140/RG.2.2.30185.16480

  3. H. Nishikawa, “Weiss-Smith Local-Preconditioning Matrix is a Diagonal Matrix in the Symmetric Form of the Euler Equations”, doi: 10.13140/RG.2.2.31959.80803, July 2021.

  4. H. Nishikawa, “On Adding Pseudo-Time Derivative”, doi: 10.13140/RG.2.2.17979.54563, April 2021.

  5. H. Nishikawa, “Derivation of BDF2/BDF3 for Variable Step Size”, doi: 10.13140/RG.2.2.28649.42083, April 2021.

  6. H. Nishikawa, “Weighted Least-Squares Gradients for Non-Uniform Grid in One Dimension”, doi:10.13140/RG.2.2.15497.77925/1, April 2021.

  7. H. Nishikawa, “On Second-Order Accuracy of One-Sided Finite-Difference Formula”, doi:10.13140/RG.2.2.35261.79841/1, March 2021.

  8. H. Nishikawa, “Numerically Computing a Stretching Factor”, doi:10.13140/RG.2.2.28526.33601/1, March 2021.

  9. H. Nishikawa, “Improved Wall-Normal Derivative Formulae for Anisotropic Adaptive Simplex-Element Grids”, arXiv:2008.12164v1 [math.NA], January 2021.

  10. H. Nishikawa, “Grid Quality Measures for Iterative Convergence”, arXiv:2008.12164v1 [math.NA], August 2020.

  11. H. Nishikawa, “On Estimating Machine-Zero Residual“, arXiv:2007.06394v2 [math.NA], July 2020.

  12. H. Nishikawa, “An Algorithm to Detect High-Γ Regions for Unstructured Grids in Two Dimensions”, December 2019, doi: 10.13140/RG.2.2.20233.80486/2

  13. H. Nishikawa, “Cell-Averaging is Dissipation”, June 2017, doi: 10.13140/RG.2.2.16989.95207

  14. H. Nishikawa, Efficient Formulas for Integrating Polynomials over Triangle and Tetrahedron, February 2017, doi: 10.13140/RG.2.2.25802.29125

  15. H. Nishikawa, “A Note on Galerkin and Edge-Based Discretizations”, October 2016, doi: 10.13140/RG.2.2.19731.02085

  16. H. Nishikawa, “On Accuracy of Derivatives on Uniform Grids (Revised)”, February 2016, doi: 10.13140/RG.2.2.14682.54727

  17. H. Nishikawa, “Which is the Best Form for CFD: Differential, Integral, or Space-Time Form?”, December 2015, doi: 10.13140/RG.2.2.22932.24967

  18. H. Nishikawa, “The Roe-Averaged Density”, March 2011, doi: 10.13140/RG.2.2.13770.80325

  19. H. Nishikawa, “Three-Dimensional Rotated-Hybrid Riemann Solvers”, December 2009, doi: 10.13140/RG.2.2.20897.84323/1

  20. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems, NASA-TM-2014-218175, March 2014.

  21. H. Nishikawa, “Galerkin Discretization on Triangular Grids”, December 2008, doi: 10.13140/RG.2.2.30626.25282

  22. H. Nishikawa, “Conservative Fluctuations (Conservation in Fluctuation-Splitting Schemes)”, doi: 10.13140/RG.2.2.36196.09606

  23. H. Nishikawa, “Solving the Quartic Equations by Newton’s Method”, June 2003, doi: 10.13140/RG.2.2.19091.40480

  24. H. Nishikawa, “RKDG Schemes for the Divergence-Free MHD Method on Cartesian Meshes”, March 2003, doi: 10.13140/RG.2.2.17996.69766

  25. H. Nishikawa, “Accurate Piecewise Linear Continuous Approximations to One-Dimensional Curves: Error Estimates and Algorithms”, January 1998, [pdf]

  26. H. Nishikawa, “AE525 Research Project Aerodynamic Heating with Turbulent Flows”, December 1994, [pdf]

——————————————————————————————————
– Conference papers  (excluding those later published in a journal)
——————————————————————————————————

  1. H. Nishikawa and B. van Leer, Towards High-Order Boundary Procedures for Finite-Volume and Finite-Difference Schemes, AIAA Paper 2023-1065, AIAA SciTech 2023 Forum, Januray 23-27, 2023, National Harbor, MD & Virtual, https://doi.org/10.2514/6.2023-1605 [ pdf : presentation file ]

  2. H. Nishikawa, An Algorithm to Detect High-Γ Regions for Three-Dimensional Unstructured Grids, AIAA Paper 2023-1604, AIAA SciTech 2023 Forum, Januray 23-27, 2023, National Harbor, MD & Virtual, https://doi.org/10.2514/6.2023-1604 [ pdf : presentation file ]

  3. K. Thompson, H. Nishikawa, E. Padway, and M. D. O’Connell, Economical Third-Order Methods for Accurate Surface Heating Predictions on Simplex Element Meshes, AIAA Paper 2023-2629, AIAA SciTech 2023 Forum, Januray 23-27, 2023, National Harbor, MD & Virtual, https://doi.org/10.2514/6.2023-2629 [pdf]

  4. Y. Higo, Y. Nakashima, H. Nishikawa, Validation of a Hypersonic-Flow Solver within scFLOW, a Comprehensive Polyhedral-Grid CFD Package, AIAA Paper 2023-0072, AIAA SciTech 2023 Forum, Januray 23-27, 2023, National Harbor, MD & Virtual, https://doi.org/10.2514/6.2023-0072 [pdf]

  5. Y. Liu, B. Diskin, H. Nishikawa, W. K. Anderson, G. C. Nastac, E. J. Nielsen, A. Walden, and L. Wang, Assessment of Edge-Based Viscous Method for Corner-Flow Solutions on Graphics Processing Units, AIAA Paper 2023-1223, AIAA SciTech 2023 Forum, Januray 23-27, 2023, National Harbor, MD & Virtual, https://doi.org/10.2514/6.2023-1223 [pdf]


  6. E. Padway and H. Nishikawa, An Adaptive Space-Time Hyperbolic Navier-Stokes Solver for Two- Dimensional Unsteady Viscous Flows, ICCFD11-2022-3001, Eleventh International Conference on Computational Fluid Dynamics (ICCFD11), Maui, HI, USA, July 11-15, 2022 [pdf]

  7. B. Diskin, Y. Liu, and H. Nishikawa, Analysis of Edge-Based Method on Tetrahedra for Diffusion, ICCFD11- 2022-3001, ICCFD11-1403, Eleventh International Conference on Computational Fluid Dynamics (ICCFD11), Maui, HI, USA, July 11-15, 2022 [pdf]

  8. Y. Liu, B. Diskin, H. Nishikawa, W. K. Anderson, G. C. Nastac, E. J. Nielsen, and L. Wang, Edge-Based Viscous Method for Mixed-Element Node-Centered Finite-Volume Formulation, AIAA Paper 2022-4083, AIAA AVIATION 2022 Forum, June 27-July 1, 2022, Chicago, IL & Virtual, https://doi.org/10.2514/6.2022-4083 [pdf]

  9. H. Nishikawa, New Unstructured Grid Limiter Functions, AIAA Paper 2022-1374, AIAA SciTech 2022 Forum, 3-7 January 2022, San Diego & Online. https://doi.org/10.2514/6.2022-1374 [ pdf | presentation file ]

  10. J. A White, H. Nishikawa, M. D O’connell, F-ANG+: A 3-D Augmented-Stencil Face-Averaged Nodal- Gradient Cell-Centered Finite-Volume Method for Hypersonic Flows, AIAA Paper 2020-1848, AIAA SciTech 2022 Forum, 3-7 January 2022, San Diego & Online. https://doi.org/10.2514/6.2022-1848 [ pdf ]

  11. E. Padway and H. Nishikawa, An Adaptive Space-Time Edge-Based Solver for Two-Dimensional Unsteady Viscous Flows, AIAA Paper 2022-2201, AIAA SciTech 2022 Forum, 3-7 January 2022, San Diego & Online. https://doi.org/10.2514/6.2022-2201 [ pdf ]

  12. H. Nishikawa and J. A White, A Simplified FANG Cell-Centered Finite-Volume Method and Comparison with Other Methods for Trouble-Prone Grids, AIAA Paper 2021-2720, AIAA Aviation 2021 Forum, 2-6 August 2021, Virtual Event. https://doi.org/10.2514/6.2021-2720 [ pdf ]

  13. E. Padway and H. Nishikawa, Resolving Confusion Over Third-Order Accuracy of U-MUSCL, AIAA Paper 2021-0056, AIAA SciTech 2020 Forum, 11-15 & 19-21 January 2021, Virtual Event. https://doi.org/10.2514/6.2021-0056 [ pdf ]

  14. B. Diskin, N. N. Ahmad, W. K. Anderson, J. M. Derlaga, M. J. Pandya, C. L. Rumsey, L. Wang, S. L. Wood, Yi Liu, H. Nishikawa and M. C. Galbraith, Verification Test Suite for Spalart-Allmaras QCR2000 Turbulence Model, AIAA Paper 2021-1552, AIAA SciTech 2021 Forum, 11-15 & 19-21 January 2021, Virtual Event. https://doi.org/10.2514/6.2021-1552 [ pdf ]

  15. H. Nishikawa and E. Padway, An Adaptive Space-Time Edge-Based Solver for Two-Dimensional Unsteady Inviscid Flows, AIAA Paper 2020-3024, AIAA Aviation Forum, 15-19 June 2020, Virtual Event. https://doi.org/10.2514/6.2020-3024 [ pdf ]

  16. H. Nishikawa, Implicit Edge-Based Gradients for Simplex Grids, AIAA Paper 2020-3048, AIAA Aviation Forum, 15-19 June 2020, Virtual Event. https://doi.org/10.2514/6.2020-3048 [ pdf ]

  17. H. Nishikawa, A Face-Averaged Nodal Gradient Cell-Centered Finite-Volume Method for Mixed Grids, AIAA Paper 2020-3049, AIAA Aviation Forum, 15-19 June 2020, Virtual Event. https://doi.org/10.2514/6.2020-3049 [ pdf ]

  18. Y. Higo, Y. Nakashima, K. Fujiyama, T. Irie, H. Nishikawa, RANS Solutions on Three-Dimensional Benchmark Configurations with scFLOW, a Polyhedral Finite-Volume Solver, AIAA Paper 2020-3029, AIAA Aviation Forum, 15-19 June 2020, Virtual Event. https://doi.org/10.2514/6.2020-3029 [ pdf ]

  19. H. Nishikawa, A Face-Area-Weighted Centroid Formula for Reducing Grid Skewness and Improving Convergence of Edge-Based Solver on Highly-Skewed Simplex Grids, AIAA Paper 2020-1786, AIAA SciTech 2020 Forum, 6-10 January 2020, Orlando, Florida. https://doi.org/10.2514/6.2020-1786 [ pdf | presentation ]

  20. H. Nishikawa and J. A White, Face-and Cell-Averaged Nodal-Gradient Approach to Cell-Centered Finite-Volume Method on Mixed Grids, AIAA Paper 2020-1787, AIAA SciTech 2020 Forum, 6-10 January 2020, Orlando, Florida. https://doi.org/10.2514/6.2020-1787 [ pdf ]

  21. J. A White, H. Nishikawa, R. Baurle, A 3-D Nodal-Averaged Gradient Approach For Unstructured-Grid Cell-Centered Finite-Volume Methods For Application to Turbulent Hypersonic Flow, AIAA Paper 2020-0652, AIAA SciTech 2020 Forum, 6-10 January 2020, Orlando, Florida. https://doi.org/10.2514/6.2020-0652 [ pdf ]

  22. J. A White, R. Baurle, H. Nishikawa, Efficient and Robust Weighted Least-Squares Cell-Average Gradient Construction Methods For the Simulation of Scramjet Flows, Joint Army-Navy-NASA-Air Force (JANNAF) 66th JPM / PIB / 49th CS / 37th APS / 37th EPSS / 31st PSHS Joint Subcommittee Meeting at Dayton, Ohio, June 2019 [ pdf ]

  23. L. Li, J. Lou, H. Luo, and H. Nishikawa, High-Order Hyperbolic Navier-Stokes Reconstructed Discontinuous Galerkin Method for Unsteady Flows, AIAA 2019-3060, AIAA Aviation 2019 Forum, 17-21 June 2019, Dallas, Texas, 2019 [ pdf ]

  24. J. A. White, H. Nishikawa, and R. A. Baurle, “Weighted Least-squares Cell-Average Gradient Construction Methods for the VULCAN-CFD Second-Order Accurate Unstructured-Grid Cell-Centered Finite-Volume Solver”, AIAA2019-0127, AIAA Scitech 2019 Forum, 7-11 January 2019, San Diego, California. [ pdf ]

  25. H. Nishikawa, “An Implicit Gradient Method for Cell-Centered Finite-Volume Solver on Unstructured Grids”, AIAA2019-1155, AIAA SciTech 2019 Forum, 7-11 January 2019, San Diego, California. [ pdf ]

  26. L. Li, J. Lou, H. Luo, and H. Nishikawa, “High-Order Hyperbolic Navier-Stokes Reconstructed Discontinuous Galerkin Method”, AIAA Paper 2019-1150, AIAA Scitech 2019 Forum, 7-11 January 2019, San Diego, California. [ pdf ]

  27. H. Nishikawa and Y. Liu, “Third-Order Edge-Based Scheme for Unsteady Problems”, AIAA Paper 2018-4166, AIAA 2018 Fluid Dynamics Conference, 25 – 29 June 2018, Atlanta, Georgia. [ pdf ]

  28. J. Lou and L. Li and H. Luo and H. Nishikawa}, “Explicit Hyperbolic Reconstructed Discontinuous Galerkin Methods for Time-Dependent Problems”, AIAA Paper 2018-4270, AIAA 2018 Fluid Dynamics Conference, 25 – 29 June 2018, Atlanta, Georgia. [ pdf ]

  29. L. Li and J. Lou and H. Luo and H. Nishikawa, “A New Formulation of Hyperbolic Navier-Stokes Solver based on Finite Volume Method on Arbitrary Grids”, AIAA Paper 2018-4160, AIAA 2018 Fluid Dynamics Conference, 25 – 29 June 2018, Atlanta, Georgia. [ pdf ]

  30. B. Diskin and H. Nishikawa, “Customized Grid Generation Codes for Benchmark Three-Dimensional Flows”, AIAA Paper 2018-1101, 56th AIAA Aerospace Sciences Meeting, 8 – 12 January 2018, Kissimmee, Florida. [ pdf ]

  31. B. Diskin, W. K. Anderson, M. J. Pandya, C. L. Rumsey, J. L. Thomas, Y. Liu, H. Nishikawa, “Grid Convergence for Three Dimensional Benchmark Turbulent Flows”, AIAA Paper 2018-1102, 56th AIAA Aerospace Sciences Meeting, 8 – 12 January 2018, Kissimmee, Florida. [ pdf ]

  32. J. Lou, L. Li, H. Luo, H. Nishikawa, “First-Order Hyperbolic System Based Reconstructed Discontinuous Galerkin Methods for Nonlinear Diffusion Equations on Unstructured Grids”, AIAA Paper 2018-2094, 56th AIAA Aerospace Sciences Meeting, 8 – 12 January 2018, Kissimmee, Florida. [ pdf ]

  33. L. Li, X. Liu, Jialin Lou, H. Luo, H. Nishikawa, Y. Ren, “A Discontinuous Galerkin Method Based on Variational Reconstruction for Compressible Flows on Arbitrary Grids”, AIAA Paper 2018-0831, 56th AIAA Aerospace Sciences Meeting, 8 – 12 January 2018, Kissimmee, Florida. [ pdf ]

  34. J. A. White, R. Baurle, B. J. Passe, S. C. Spiegel, and Hiroaki Nishikawa, Geometrically Flexible and Efficient Flow Analysis of High Speed Vehicles Via Domain Decomposition, Part 1, Unstructured-grid Solver for High Speed Flows}, JANNAF 48th Combustion 36th Airbreathing Propulsion 36th Exhaust Plume and Signatures 30th Propulsion Systems Hazards Joint Subcommittee Meeting Programmatic and Industrial Base Meeting, Newport News, VA, 2017.  [ pdf ]

  35. H. Nishikawa, “Uses of Zero and Negative Volume Elements for Node-Centered Edge-Based Discretization”, AIAA Paper 2017-4295, 23rd AIAA Computational Fluid Dynamics Conference, 5 – 9 June 2017, Denver, Colorado. [ pdf | seminar video ]

  36. Y. Liu and H. Nishikawa “Third-Order Edge-Based Hyperbolic Navier-Stokes Scheme for Three-Dimensional Viscous Flows”, AIAA Paper 2017-3443, 23rd AIAA Computational Fluid Dynamics Conference, 5 – 9 June 2017, Denver, Colorado. [ pdf ]

  37. J. Lou, L. Li, X. Liu, H. Luo, H. Nishikawa, “Reconstructed Discontinuous Galerkin Methods Based on First-Order Hyperbolic System for Advection-Diffusion Equations”, AIAA Paper 2017-3445, 23rd AIAA Computational Fluid Dynamics Conference, 5 – 9 June 2017, Denver, Colorado.[ pdf ]

  38. L. Li, X. Liu, J. Lou, H. Luo, H. Nishikawa, Yuxin Ren, “A Finite Volume Method Based on Variational Reconstruction for Compressible Flows on Arbitrary Grids”, AIAA Paper 2017-3097, 23rd AIAA Computational Fluid Dynamics Conference, 5 – 9 June 2017, Denver, Colorado. [ pdf ]

  39. J. Lou and X. Liu and H. Luo and H. Nishikawa, Reconstructed Discontinuous Galerkin Methods for Hyperbolic Diffusion Equations on Unstructured Grids, AIAA Paper 2017-0310, 55th AIAA Aerospace Sciences Meeting, 9 – 13 January 2017, Grapevine, Texas. [ pdf ]

  40. H. Nishikawa and Y. Liu, Hyperbolic Navier-Stokes Method for High-Reynolds-Number Boundary Layer Flows, AIAA Paper 2017-0081, 55th AIAA Aerospace Sciences Meeting, 9 – 13 January 2017, Grapevine, Texas. [ pdf ]

  41. Y. Liu and H. Nishikawa, Third-Order Inviscid and Second-Order Hyperbolic Navier-Stokes Solvers for Three-Dimensional Unsteady Inviscid and Viscous Flows, AIAA Paper 2017-0738, 55th AIAA Aerospace Sciences Meeting, 9 – 13 January 2017, Grapevine, Texas. [ pdf ]

  42. Y. Liu and H. Nishikawa, “Third-Order Inviscid and Second-Order Hyperbolic Navier-Stokes Solvers for Three-Dimensional Inviscid and Viscous Flows”, AIAA Paper 2016-3969, 46th AIAA Fluid Dynamics Conference, 13-17 June 2016, Washington, D.C. [ pdf ]

  43. J. Lou, H. Luo, and H. Nishikawa, Discontinuous Galerkin Methods for Hyperbolic Advection-Diffusion Equation on Unstructured Grids, The 9th International Conference on Computational Fluid Dynamics (ICCFD), July 11-15, Istanbul, Turkey, 2016. [ pdf ]

  44. Y. Nakashima, N. Watanabe, and H. Nishikawa, Hyperbolic Navier-Stokes Solver for Three-Dimensional Flows, AIAA Paper 2016-1101, 54th AIAA Aerospace Sciences Meeting, 4-8 January, San Diego, California, 2016. [ pdf ]

  45. H. Nishikawa, Alternative Formulations for First-, Second-, and Third-Order Hyperbolic Navier-Stokes Schemes, AIAA Paper 2015-2451, 22nd AIAA Computational Fluid Dynamics Conference, June 2015.  [ pdf ]

  46. H. Nishikawa, Active Flux for Advection Diffusion, AIAA Paper 2015-2450, 22nd AIAA Computational Fluid Dynamics Conference, June 2015. [ pdf ]

  47. Y. Nakashima, N. Watanabe, and H. Nishikawa, Development of an Effective Implicit Solver for General-Purpose Unstructured CFD Software, C08-1, The 28th Computational Fluid Dynamics Symposium, December 2014. [ pdf ]

  48. H. Nishikawa, First, Second, and Third Order Finite-Volume Schemes for Navier-Stokes Equations, AIAA Paper 2014-2091, 7th AIAA Theoretical Fluid Mechanics Conference, June 2014. [ pdf ]

  49. H. Nishikawa, P. L. Roe, and T. A. Eymann, Active Flux for Diffusion, AIAA Paper 2014-2092, 7th AIAA Theoretical Fluid Mechanics Conference, June 2014. [ pdf ]

  50. H. Nishikawa and B. Diskin, Evaluation of Multigrid Solutions for Turbulent Flows, AIAA Paper 2014-0082, AIAA SciTech, June 2014.  [ pdf ]

  51. H. Nishikawa, B. Diskin, J. L. Thomas, and D. H. Hammond, Recent Advances in Agglomerated Multigrid, AIAA Paper 2013-863, 51st AIAA Aerospace Sciences Meeting, 7 – 10 January, Grapevine, Texas, 2013. [ pdf ]

  52. H. Nishikawa, New-Generation Hyperbolic Navier-Stokes Schemes: (1/h) Speed-Up and Accurate Viscous/Heat Fluxes, AIAA Paper 2011-3043, 20th Computational Fluid Dynamics Conference, June 2011. [ pdf ]

  53. H. Nishikawa, Two Ways to Extend Diffusion Schemes to Navier-Stokes Schemes: Gradient Formula or Upwind Flux, AIAA Paper 2011-3044, 20th Computational Fluid Dynamics Conference, June 2011. [ pdf ]

  54. H. Nishikawa and B. Diskin, Development and Application of Parallel Agglomerated Multigrid Methods for Complex Geometries , AIAA Paper 2011-3232, 20th Computational Fluid Dynamics Conference, June 2011. [ pdf ]

  55. H. Nishikawa, Beyond Interface Gradient: A General Principle for Constructing Diffusion Schemes, AIAA Paper 2010-5093, 40th Fluid Dynamics Conference and Exhibit, June 2010. [ pdf ]

  56. H. Nishikawa, B. Diskin, and J. L. Thomas, Development and Application of Agglomerated Multigrid Methods for Complex Geometries, AIAA Paper 2010-4731, 40th Fluid Dynamics Conference and Exhibit, June 2010. [ pdf ]

  57. H. Nishikawa, Towards Future Navier-Stokes Schemes: Uniform Accuracy, O(h) Time step, and Accurate Viscous/Heat Fluxes, AIAA Paper 2009-3648, 19th AIAA Computational Fluid Dynamics Conference, June 2009. [ pdf ]

  58. H. Nishikawa and P. L. Roe, High-Order Fluctuation-Splitting Schemes for Advection-Diffusion Equation, Computational Fluid Dynamics 2006: Proceedings of the Fourth International Conference on Computational Fluid Dynamics, ICCFD, Ghent, Belgium, 10-14 July 2006, Springer 2009. [ pdf ]

  59. F. Ismail, P. L. Roe, and H. Nishikawa, A Proposed Cure to the Carbuncle Phenomenon, Computational Fluid Dynamics 2006: Proceedings of the Fourth International Conference on Computational Fluid Dynamics, ICCFD, Ghent, Belgium, 10-14 July 2006, Springer 2009. [ pdf ]

  60. H. Nishikawa and P. L. Roe, Towards High-Order Fluctuation-Splitting Schemes for Navier-Stokes Equations , AIAA Paper 2005-5244, 17th AIAA Computational Fluid Dynamics Conference, Toronto, June 2005. [ pdf ]

  61. P. L. Roe, H. Nishikawa, F. Ismail and L. Scalabrin, On Carbuncles and Other Excrescences , AIAA Paper 2005-4872, 17th AIAA Computational Fluid Dynamics Conference, Toronto, June 2005. [ pdf ]

  62. H. Nishikawa and P. L. Roe, On High-Order Fluctuation-Splitting Schemes for Navier-Stokes Equations, Computational Fluid Dynamics 2004: Proceedings of the Third International Conference on Computational Fluid Dynamics, ICCFD, Toronto, 12-16 July 2004, Springer, 2006. [ pdf ]

  63. H. Nishikawa, P. L. Roe, Y. Suzuki, and B. van Leer, A General Theory of Local Preconditioning and Its Application to the 2D Ideal MHD Equations, AIAA Paper 2003-3704, 16th AIAA Computational Fluid Dynamics Conference, Orlando, June 2003. [ pdf ]

  64. P. L. Roe, K. Kabin and H.Nishikawa, Toward A General Theory of Local Preconditioning, AIAA Paper 2002-2956, 32nd AIAA Fluid Dynamics Conference, St. Louis, June 2002. [ pdf ]

  65. H. Nishikawa, M. Rad, and P. L. Roe, A Third-Order Fluctuation-Splitting Scheme That Preserves Potential Flow, AIAA Paper 2001-2595, 15th AIAA Computational Fluid Dynamics Conference, Anaheim, June 2001. [ pdf ]

  66. H. Nishikawa, M. Rad, and P.L. Roe , Grids and Solutions from Residual Minimisation, Computational Fluid Dynamics 2000: Proceedings of the First International Conference on Computational Fluid Dynamics, ICCFD, Kyoto, Japan, 10-14 July 2000, Springer, 2001. [ pdf ]

  67. M. Rad, H. Nishikawa and P. L. Roe , Some Properties of Residual Distribution Schemes for Euler Equations, Computational Fluid Dynamics 2000: Proceedings of the First International Conference on Computational Fluid Dynamics, ICCFD, Kyoto, Japan, 10-14 July 2000, Springer, 2001. [ pdf ]

Written by Katate Masatsuka

July 30, 2019 at 9:54 am

So, I turned 51 today.

leave a comment »

Today I turned 51, and I still feel like I’m as passionate as I used to be, like in the summer of 1994 when I suddenly left Tokyo and arrived in Michigan to study CFD algorithms which I still do. I think I love it when I haven’t accomplished anything yet and I’m still trying.

Written by Katate Masatsuka

September 10, 2022 at 7:04 am

Reached 50 today. So, now I’m a half-century-old man (HCOM), enjoying beer for a moment before starting the next half.

with one comment

Reached 50 today. So, now I’m a half-century-old man (HCOM), enjoying beer for a moment before starting the next half.

Written by Katate Masatsuka

September 10, 2021 at 3:49 pm

帰ってきた「青春の高校数学」2021

leave a comment »

出版社の廃業により絶版となっていた、我が「青春の高校数学」全3巻。2021年9月1日、NextPublishingからのオンデマンド出版、上下巻の全2冊として復活を果たしました。現在、Amazon.co.jpにて販売されています。(下の表紙画像をクリックするとamazonのページに飛びます。)

よりわかりやすくするために、内容を徹底的に修正。また、西川裕之進氏による思い切った表紙デザインで、たとえ読まないとしても、インテリア小物として、あなたのお部屋をおしゃれに演出することでしょう。

私は本当に嬉しい。多くの高校生、そして大学生やその他の人々にも読んで頂き、終わりなき青春の人生を謳歌するのに少しでも役立ってくれたらと強く願う。

    

Written by Katate Masatsuka

September 9, 2021 at 11:28 am

So, I’m now 49. I still feel young and I still have ideas to explore. My journey continues.

leave a comment »

Written by Katate Masatsuka

September 10, 2020 at 6:33 am

西暦と年号を簡単に変換できる数の覚え方 Updated

leave a comment »

西暦と日本の年号の変換を行う数を知っているか。

例えば2011年は平成23年。これは、2011-88=1923となって、その下二桁が平成になる。というわけで、西暦と平成の変換数は88となる。つまり、西暦を平成に変換するには88を引けばいい。逆に平成を西暦に変換するには88を足せばいい(西暦の下二桁がわかる)。

昭和は25、大正は11、明治は67という具合になる。この4つの変換数、88 25 11 67の覚え方はとっても簡単で、

88 25 11 67 = パパニッコリ、 イイ胸毛!

[参照:2005年のおっさんインタビュー:「おっさん流暗記術、いい胸毛シリーズ!」]

そして令和の時代が始まり、変換数が一つ増えた。2019年で令和1年なので、変換数は18だ。これを含めた覚え方はこうなる。

18 88 25 11 67 = いやーん, パパニッコリ、イイ胸毛!

[補足:ちなみに皇紀は西暦に660を足せばいい: ロック、ロックだぜー!]

Written by Katate Masatsuka

March 28, 2020 at 10:10 pm

First impressions are lasting

leave a comment »

Just remembered the advice I got from one of my mentors when I was a student: First impressions are lasting, and whether it is good or bad, it will take a long time to change it.

Written by Katate Masatsuka

January 2, 2020 at 9:04 am

Posted in General, In English

Keep trying and keep moving forward

leave a comment »

I turned 48 today and still feel young. Just can’t feel old until the idea I pursue has proven successful in real-world applications. I keep trying and keep moving forward.

 

Written by Katate Masatsuka

September 10, 2019 at 10:52 am

私はとにかく前進したい

leave a comment »

どこにいても不満を感じることはある。組織、あるいは上司や同僚に対して、評価されていないとか、不公平だとか、合理的でないとか、文句を言いたくなることがあるだろう。それは構わないが、最も重要なことは「ではどうするのか」ということだと思わないか? 思うだろ? 私もそう思う。

問題提起をし、それで状況が変わるのであればよいが、多くの場合、何を言っても大して状況は変わらないと私は思っている。それゆえ、私はとにかく進める道を見つけて前進することにしてきた。

大学院生時代、学会へ行かせてもらえなかった私は、とにかくやれることや思いついたことをやり、論文の形で書き残していった。後に、そのいくつかは本当に論文になった。また、その際に様々なコードを書いていたからこそ、ろくに論文もない私が卒業直後ポスドクの職を得て、さらにすぐに学会論文とジャーナル論文を出すことができた。

その後のポスドク時代、いわゆる「ボス」があまりにジャーナル投稿を渋り、いつまでたっても論文を出せない状態が続いた頃、私は前進する為に、彼の名前を外してジャーナルへ投稿した。その論文には「ボス」は何の
貢献もしていなかったので問題とはならなかった。さらにまたその後のポスドク時代には、その時の「ボス」があまりに建設的でないので、彼が不在の間に新しい仕事を見つけて姿を消したこともあった。

研究費を打ち切られた時には、文句を言っても変わらないゆえ、すぐに別のところへプロポーザルを出し、その研究を続けることができるようになった。研究所内で書いたコードは持ち出してはならないと言われたら、コードは外で書くことにした。ある有名研究機関の研究者にアイデアを共有してあげた際、一旦共有したら許可無しに他者に話してはならないと言われたので、二度とアイデアを共有しないようにしてあげている。

私はとにかく常に前へ進みたいと思っている。

Written by Katate Masatsuka

July 28, 2019 at 10:07 pm

Posted in General

不純物、或いは学歴ロンダリング

leave a comment »

かつて私が東海大学から某他大学大学院に進学したとき、それを良く思わない人がいると聞いたことがある。昔の話だが、某他大学の教授が「うちの大学院卒の中には不純物がいるから採用の際には気をつけるように」と企業等に助言していたらしい。現在このような上位の他大学院への進学は「学歴ロンダリング」と呼ばれているようで、私はよく知らないが、やはり良く思われていないような雰囲気を感じる。ちなみに、私はその大学院を卒業しなかったので「学歴ロンダリング」にはならなかった(履歴書に記されていない)。

Written by Katate Masatsuka

May 26, 2019 at 7:34 am

Posted in About Author, General

雇用が不安定なのがいい

leave a comment »

私の場合は、雇用が不安定なのがいい。今も給料は全て期限付きの研究費から出ており、切れたら即解雇となる。これがいい。プロポーザルや論文など、やれることは全てやる。研究者である間に、出せる限りのアイデアを出しそれらを全て論文にして発表する。ここまでやってもクビにするのかというぐらいの成果を出し続ける。しかし、たとえ結果を出しても切られるときはあっさりと切られるのがこの世界だ。それは往往にして理不尽なものであるが、それも面白い。私が目指しているのは「死力を尽くした末の敗北」だ。そして本当に死力を尽くしていればそう簡単には敗北しない。

Written by Katate Masatsuka

May 25, 2019 at 9:14 pm

Posted in About Author, General

ローガン教に入信した

leave a comment »

ローガン教に入信した。「これを一つ買うだけで小さい文字も見えやすくなり、あなたの人生がガラリと変わりますよ!」みたいなウサン臭い謳い文句のせいで敬遠していたが、ものすごい見えやすさで即座に入信してしまった。確かに人生が変わった。携帯を顔面スレスレで操作することができる。みそ汁を、具をきちんと認識しながらすすることができる。また、薄暗いBarでメニューを隅々まで読み、そこに書かれていない裏メニューを注文することだってできるだろう。 ゲーテは「学問と芸術を持っている者は、同時に宗教を持っている。学問と芸術を持たない者は、宗教を持て!」と言ったそうだ。そう、学問や芸術を持っていようがいまいが、人はローガン教を持つべきである。

Written by Katate Masatsuka

January 28, 2019 at 11:24 pm

Posted in About Author, General

私が数値流体力学の研究に興味を持ったきっかけ(拒否されたレポート)

leave a comment »

大学在学中にはすでに数値流体力学の分野で研究がしたいと思っていたのは覚えている。日本の大学院に入学した時に、なぜ数値流体力学の授業が無いのか教授に質問したことがある。米国の大学院へ留学したときは迷うことなく数値流体力学の研究を目指した。

最近になって、大学時代の宿題のレポートを見つけ昔の記憶が蘇った。

それは大学3年目の数値流体力学のクラスでの宿題で、ラプラス方程式をヤコビ反復法で解くという基礎的なものだった。プログラミングが苦手だった私は疑問を抱いた:「数値流体力学は本当にコンピューターで解かなければならないのか?」そして内部点4点の簡単な格子を設定し、4つの未知数を持つ連立方程式を導き出し、手計算で解いた。問題は精度だ。さっそく厳密解と比較して誤差を計算したところ、なんとそれはたったの5%だった。これは驚くべき精度だ。私は興奮してそれをレポートにまとめ、教授のところに持っていった。だが呆れられてしまい「いいからプログラムを書きなさい」と言われ、レポートを受け取ってもらえなかった。

思い返してみれば、言われたことだけをやる通常の宿題と異なり、自分で考えたアイデアを、自分で調査し、驚くべき結果を得て、それをレポートにまとめたという意味で、バカバカしいレポートかもしれないが、それは若い私にとってはとても新鮮な経験だったのだと思う。そして、この分野で何か独自のアイデアで貢献できる気がしたのかもしれない。

そのことを思い出した今、幸いなことに私は数値流体力学の研究者をやっている。ぜひともこの若い情熱と志を受け継ぎ、独自のアイデアで貢献してやりたいと思う。

     IMG_1127

Written by Katate Masatsuka

November 3, 2018 at 3:15 pm

Posted in General, History, Research

博士課程への進学試験 Preliminary Exam in 1996

leave a comment »

1996年春学期、私は博士課程への試験(Preliminary exam)を受験した。博士課程の指導教授は決まっていたが、研究費は無かった。多くの場合、博士課程の学生はResearch Assistant(RA)となり、授業料免除の上、給料まで出るが、私にはそのような保証はなかった。

留学費用は全て親に借金してもらったものだったが、それ以上の借金はとても厳しく、たとえPreliminary examに合格しても、私は日本に一旦帰国するつもりだった。アルバイトでお金を貯め、再びミシガンに戻る覚悟だった。実際にアルバイト情報誌を取り寄せてアルバイト先を探していた。

試験の少し前、指導教授ではなかったVL教授との会話の中で、たまたまそういった事情を話す機会があった。私は彼のクラスでトップの成績を取ったことがあった。彼は「君のような学生がお金のせいで去るのはおかしい」と言った。

Preliminary examの直前、学科の責任者の立場にあったD教授に出くわし、

「VL教授が君にお金を与えるべきだと言ってきた。もし試験に合格すれば、君にTAを与えよう」

と言われた。TAはTeaching Assistantの略で、学科で教えられているクラスの手伝いをすれば、学費免除となり、RAよりは劣るが給料も出る。VL教授の為にも、私は絶対に合格しなければならない。

自信はあった。試験の後、クラスでVL教授が言った。

「他の4人の受験者の答案を束ねても、Hiroの答案の山には及ばない。落ちるはずがない」

私はその言葉通り合格し、ミシガンに踏み止まった。

Written by Katate Masatsuka

July 1, 2018 at 7:33 pm

Posted in History

おっさんが語る、高校時代:思い起こせば80年代後半。 あの頃の わしはホッチキスやった。

leave a comment »

平成20年12月3日のインタビューより

おっさん: 思い起こせば80年代後半。 あの頃の わしはホッチキスやった。わしがパッとくわえて一噛みすれば、 文集でも何でも一発で完成や。しかし、やっぱり人間 の生徒と友達になるのは正直難しかった。なんせ、噛めばカチッと綴じてしまうもんやさかい、みんな怖がってしまうんや。「何の話してんの!」とか言うて顔近づけたら、みんな必死にのけぞってしまうんや。おまけに「あいつとキスしたら、口をホッチキスで留められてしまうで!」などと噂され る始末。 結局、人間のギャルフレンドなんか出来たことがなかったわ。 

西川氏: (よく真顔で話せるなあ) へえ、暗い高校時代だったんですね。

おっさん: まあ、基本的には暗かったな。先生に「絶対落ちる」と言われながら奇跡的に合格した高 校やったからか、一年の学力試験でいきなり偏差値20や。いろんな人間の人に「そんな 偏差値、人間じゃ有り得へんで、はははは!」などと笑わ れたもんや。さらに、二年のときには国語がボロボロで、先生に呼び出されて「おいホッ チキス。 お前、新聞読んでるか?」「は、はい」「ふん、どうせテレビ欄やろ」てな 具合に鼻で笑われた。 古文でも「ホッチキス君。 次の試験で70点以上取らないと 単位をやれないからね。 少なくとも人間の生徒で単位を落とすような生徒は前例が無い わよ」と言われて、あまりの悔しさに枕を ホッチキスで留めまくったこともあった。 とにかく試験といえば10点、20点 が当たり前で、挙句の果てには 「 だいたい何でホッチキスが高校に来るねん? 文房具屋へ帰 れ! 」 などと怒鳴られる始末や。 一方、部活動では、 初のホッチキス部員ということでの特別待遇だったのか、1年生の分際でいきなり上級生と一緒 に練習させてもらったりして。 しかし、それが逆にモチベーションを低下させ、結局1年生の夏 休み前にやめてしもた。

西川氏: (何でも途中で辞める悪 いクセは、もうすでにこのときからあったんやな)

おっさん: わしは悔しかった。 確かにわしはホッチキスや。しかし、それでも一生懸命生きてきたんや。 「誰かホッチキス持ってない?」と誰 かが言えば、「ホッチキスは持ってないけど、俺はホッチキスやで」とか言うて、笑いを取りながら皆の役に立ってきた。 このまま高校生活が終わってしもたら、わしはただの便利なホッチキスで終わってしまう。そんなんやったら、文房具屋を飛び 出してわざわざ高校に 入学した意味が無い。よーし、こうなったら俺は俺、否、ホッチキスはホッ チキスや!人間の常識にとらわれずに、自由に思うままにかましてやる! わしはそう 決心したんや。

西川氏: (同じ土俵で勝負しないってことか?)

おっさん:  試験なんか関係あるけ!ってなもんで、数学では独自の公式を導くのに熱中した。 国語の授業でのスピーチでは 「人間というのは誰かを差別することによって仲 間意識を高める性質を持っている。ゆえにイジメは無くならない。だいたい、教師の間でもイジメがあるのに、生徒間のイジメが無くなるはずがないではないか!」などと、先生の前で堂々と熱弁かました。 英語の試験では、わざわざ教科書に載っていない 単語やイディオムで英作文をし、それをバツにした先生に「意味は合ってまんがな! なんでバツやねん!」と詰め寄り「おい、ホッチキスよ。 頼むから俺が教えた 単語を使ってくれ」と懇願された。 サッカー部をやめても、密かに他校のゴルフ部に 潜り込み、関西ジュニア選手権にエントリーして豪快に予選落ちした。そうやって、わしはとにかく猛進した。そして、いつの日か、「宇宙は無限だと? 笑わせんな、アホ! いつかきっと宇宙の端っこを見つけて、この口でバチコーンと綴じてやる!」と、これまた人間の常識を超えた大きな夢を抱くようになっていたんや。そうして、3年生の2学期に大学進学を決意、 本格的に人間の受験勉強を始め、何とかギリギリ的に航空宇宙学科に合格。 史上初のホッチキス大学生としてデビューすることとなったんや!

Written by Katate Masatsuka

January 17, 2018 at 7:20 pm

%d bloggers like this: